
The QiQu Tutorial

http://www.qiqu.org
http://www.aloba.ch
http://sourceforge.net/projects/qiqu

Table of Contents
Installing The QiQu-Plugin For Eclipse...1

Preconditions...1
Installing The QiQu-Plugin For Eclipse Using The Zip-File..1
Installing The QiQu-Plugin For Eclipse Using The Update-Site..1

Create A New QiQu-Project..2

Create A New QiQu-Script..4

The QiQu Script-Editor...5
Code-Completion and Help...5
Editor-Settings...6
Debugger Integration...7

My First QiQu-Script...8

My First Transformation With QiQu...10
The Input..10
The Wanted Output..10
The QiQu-Script - Performing The Transformation..11
Debugging the script..13
A Word About QiQu-Command Parameters...15

Parameters Holding A Reference..15
Parameters Holding A Valueexpression..15
Parameters Holding A XPath Expression...16

The QiQu-Script - Creating The Output..16

Using Velocity..20
XML structure convention...20
The QiQu Velocity-Editor...20

Code-Completion based on a given model..21
Realtime Preview..21

My First Velocity Template...22
Run Your Template From Within A QiQu-Script...24
Using Protected Sections...25

Reusing QiQu-Scripts / Chaining QiQu-Scripts..27
Reuse Of References..29

Make Your Scripts More Flexible / The Use Of Properties..30

Adding More Flexibility Using Property-Dialogs..32

Managing your Properties / Using the Script Properties Dialog..34
Launch Config Name...35

Path..35
Properties File..35
Properties...36
BaseDir..36
LogLevel...36
Add External JARs..36

The Eclipse Run dialog and the QiQu Script type...37

i

Table of Contents
Putting the Generator into a single jar...40

ii

Installing The QiQu-Plugin For Eclipse

Preconditions

To be able to work through the examples in this tutorial (this is to create and run QiQu-Scripts with the
QiQu-Plugin for Eclipse) you need to have the following installed:

Java - 1.4.2 (http://java.sun.com/j2se/1.4.2/download.html) - JRE would be enough•

Eclipse 3.x.x (http://download.eclipse.org/eclipse/downloads/index.php)•

Please note: If you only want to run QiQu-Scripts, you only need:

Java - 1.4.x (http://java.sun.com/j2se/1.4.2/download.html) - JRE would be enough•

QiQu-Runtime (generator-run.jar)•

Also you needn't to write your QiQu-Scripts with the QiQu-Plugin/QiQu Script-Editor - any texteditor would
do perfectly well... but without any assistance of course

Installing The QiQu-Plugin For Eclipse Using The Zip-File

You can download the zip-file from here, save it to disk and unzip it into the root-folder of eclipse.

Installing The QiQu-Plugin For Eclipse Using The
Update-Site

You can also download (and later update you installation) by using the Eclipse update feature.

Select Help >> Software Updates >> Find and Install... in the Eclipse menu.•

Select the option "Search for new features to install" and click the "Next >" button.•

In the next dialog click the button "New Remote Site..."; Enter "QiQu" in the field "Name:" and
"http://www.aloba.ch/qiqu/update/" in the field "URL:" - then click the button "OK".

•

In the list "Sites to include in search:" tick the checkbox of the newly created entry "QiQu" and click
"Next >".

•

In the next dialog, tick the checkbox for the QiQu feature in the list "Select the features to install:"
and click "Next >".

•

In the next dialog, select the option "I accept the terms in the license agreements" and click "Next >".•

In the next dialog click "Finish". You will be prompted a message, saying that the feature is unsigned
- just ignore that message and click "Install" - the QiQu-Plugin will be installed.

•

At the end of the installation, you well be prompted a message, saying it would be better to do a
restart of Eclipse - click "Yes" to restart.

•

Installing The QiQu-Plugin For Eclipse 1

http://java.sun.com/j2se/1.4.2/download.html
http://download.eclipse.org/eclipse/downloads/index.php
http://java.sun.com/j2se/1.4.2/download.html

Create A New QiQu-Project
To create a new QiQu-Project, select File >> New >> Project... in the Eclipse menu.

In the list of wizards select QiQu and then "New QiQu Project", then click "Next >".

Enter the name of your project and its location, click "Next >".

Create A New QiQu-Project 2

If you tick the checkbox "Use VeloCity template", the wizard will create a (additional) folder named
"velocity" that's what we want... If you tick the checkbox "Create a new file mainscript.qiq in Folder scripts"
an empty QiQu-Script file named "mainscript.qiq" would be created in the folder "scripts" - we don't want to
do this for the moment...
Click "Finish" to complete the creation of your project.

Please note: You do not have to create a QiQu-Project to be able to create and/or run QiQu-Scripts (you can
create and run them also in other project-types - i.e. Java-Projects), nor is the folder-structure created by the
wizard mandatory - in our examples, though, the default folder-structure is used.

Create A New QiQu-Project 3

Create A New QiQu-Script
To create a new QiQu-Script, select File >> New >> Other... in the Eclipse menu. In the lost of wizards select
QiQu and then "New QiQu Script File", then click "Next". Enter the location and the name of the file
('scripts/script01.qiq') and click "Finish".

Please note: For the QiQu Eclipse-Plugin being able to recognize your file as QiQu-Script and provide the
respective features (i.e. to provide additional action-entries in the popup menu for the file, opening the correct
editor etc.) your file must have the extension ".qiq"!

Create A New QiQu-Script 4

The QiQu Script-Editor
Before we start writing our first QiQu-Script let's have a look at the Editor that will support your task.

Code-Completion and Help

Entering a "<" within your script will automatically open a code-completion popup containing all the
available QiQu-Commands.

Select a QiQu-Command in the list an press "Enter". The selected QiQu-Command is added to your script.
Now "Ctrl + Space" again.

Another code completion popup is opened containing all possible parameter combinations for this command.
Select a combination from the list and press "Enter" - the selected parameter-combination is added to your
script.

Now move your mouse-pointer to the name of the command in your script and wait a second - a tool tip
containing more information about the command is displayed. You can check this behaviour also for
command parameters and functions.

You can press "Ctrl + Space" anywhere within your script and you will get code-completion assistance
available for the actual area/part - just try it out.

The QiQu-Editor also can show you problems in the code of your QiQu-Script. At the left side of the
Edtior-Window, you can sometimes see different markers/icons indicating a problem.

The QiQu Script-Editor 5

Just move your mouse-pointer over the icon and wait a second - the respective message will be displayed in a
tool tip.

Editor-Settings

Normally, all files with the extension ".qiq" should open automatically in the QiQu Script-Editor. If not,
probably the settings for the file extension is missing.

Select Window >> Preferences in the Eclipse menu. In the tree-view on the left of the dialog you
select "Workbench" and then "File Associations".

•

Code-Completion and Help 6

Browse the list "File types:" if there is already an entry "*.qiq". If not, click the "Add..." button right
to the file-types list. Enter "*.qiq" in the field "File type:" - click "OK".

•

Make sure the entry "*.qiq" is selected in the file-types list. Click the "Add..." button right to the list
"Associated editors:".

•

Make sure the option "Internal Editors" is selected - then select the entry "QiQu Script-Editor" in the
list and click "OK". The QiQu Script-Editor is added to the associated-editors list.

•

Make sure that the entry "QiQu Script-Editor" has the extension "(default)" - if not, select the entry
and click the button "Default".

•

Click "OK" to close the preferences dialog.•

Debugger Integration

Debugging of QiQu scripts is completely integrated in the Eclipse Debugger. You will learn more about
debugging of QiQu scripts, after you have written your first script. For now, just feel comfortable by knowing
that you will be able to debug your scripts.

Editor-Settings 7

My First QiQu-Script
Let's have a first look at the QiQu-Script-Language. We create a script which only prints out the famous text
'Hello World' to the console.

Create a new QiQu-Script named "script01.qiq" in the folder "script" - the QiQu Script-Editor should open:

Write the following code:

<?xml version="1.0" encoding="ISO-8859-1"?>
<QiQuScript>
 <EchoText InfoText="'Hello World'"/>
</QiQuScript>

As you can see, the QiQu-Script-Language is written in XML. Each QiQu-Command is defined as XML
element, it's parameters are defined as attributes.

In our example you see the QiQu-Command <EchoText> with the parameter "InfoText" containing the value
'Hello World'. This command will print out the Text "Hello World" to the console and/or into a log file (make
sure the text is enclosed by "'"!! (correct format: InfoText="'Hello World'")

Please note: The root-element of each QiQu-Script mustbe the QiQu-Command <QiQuScript> - as shown in
the example.

Now save your first QiQu-Script.

To run your script, select the file in the Navigator - open the context-menu (2 nd mouse-button) and select
Run As->QiQu Script

My First QiQu-Script 8

You can also select the Run As entry from context-menu of the editor itself.

Now watch the output in the console-view.

Congratulations! You just finished your first QiQu-Task!

Well this was quite easy, wasn't it? But now let's go to a more complex sample...

My First QiQu-Script 9

My First Transformation With QiQu
Now we want to perform the first real transformation. Inside this chapert, we will also see what the debugger
can do for us.

The Input

As input we have to create the following XML file "inputmodel01.xml" in the folder "model/input" - use File
>> New >> File in the Eclipse menu (don't worry, a XMI example will follow later):

<beanlist>
 <bean name= " ABean" package="ch.aloba.qiqu.helloWorld.beans">
 <propertylist>
 <property name="firstProperty" type="java.lang.String"/>
 <property name="secondProperty" type="java.lang.String"/>
 </propertylist>
 </bean>
 <bean name="AnotherBean" package="ch.aloba.qiqu.helloWorld.beans">
 <propertylist>
 <property name="myProperty" type="java.lang.String"/>
 <property name="yourProperty" type="java.lang.String"/>
 </propertylist>
 </bean>
</beanlist>

Of course - if you wish you can add more <bean> and <property> elements.

The Wanted Output

We want to transform each <bean> element into a Java bean.

The respective source code for each Java class should look as follows:

/*
 * Created by QiQu Bean Generator
 * Date 11.01.06
 */
package ch.aloba.qiqu.helloWorld.beans

/**
 * Bean Class ABean.
 */
public class ABean
{
 /* m_firstProperty */
 private java.lang.String
m_firstProperty = null;

 /* m_secondProperty */
 private java.lang.String
m_secondProperty = null;

 /**
 * Default Constructor.
 */
 public ABean()
 {
 }
 /**
 * @return m_firstProperty

My First Transformation With QiQu 10

 */
 public java.lang.String
getFirstProperty()
 {
 return m_firstProperty;
 }

 /**
 * @param firstProperty
 */
 public void setFirstProperty(java.lang.String firstProperty)
 {
 m_firstProperty = firstProperty;
 }

 /**
 * @return m_secondProperty
 */
 public java.lang.StringgetSecondProperty()
 {
 return m_secondProperty;
 }

 /**
 * @param secondProperty
 */
 public void setSecondProperty(java.lang.String secondProperty)
 {
 m_secondProperty = secondProperty;
 }
}

All the variable parts in the code are marked italic bold.

If you compare the wanted output with the input, you find out that most of the information is already in the
input model.

What we have to do is to add the creation date and the names for the getter and setter methods (first letter in
upper-case).

The QiQu-Script - Performing The Transformation

So let's write the according QiQu-Script: Create a new QiQu-Script named "script02.qiq".

The main task of a QiQu-Script is to transform the input-model (XML) into an output-model (XML) which
then can be used for further tasks.

To perform this transformation there are basically two possible ways:

create a completely new output-model•
enhance/enrich the input-model•

If the structure of input- and output-model is very similar, as in our example, the second way is easier.

In our example we have to perform the following steps:

Load the input-model1.
Add an attribute "date" containing the actual date to each <bean> element.2.
Add an attribute "getsetName" to each <attribute> element and set its value to the value of the
attribute "name"; the first letter is set to upper case.

3.

The Wanted Output 11

Save the output-model.4.

Fill the following code into your "script02.qiq":

<?xml version="1.0" encoding="ISO-8859-1"?>

<QiQuScript>

 <LoadDoc FileName="'model/input/inputmodel01.xml'" NewDocRef="$inModel"/>

 <For NodeRef="$inModel" XPath="//bean" IteratorEleRef="$lbean">
 <Set Ref="$lbean.date" Value="dateString('dd.MM.yy')"/>
 </For>

 <For NodeRef="$inModel" XPath="//property" IteratorEleRef="$lprop">
 <Set Ref="$lprop.methName" Value="toFirstUpperCase($lprop.name)"/>
 </For>

 <SaveDoc FileName="'model/output/outputmodel01.xml'"
 DocRef="$inModel" Encoding="'ISO-8859-1'"/>

</QiQuScript>

Let's have a closer look at the commands we used:

The root element of our QiQu-Script, again, is the QiQu-Command <QiQuScript>.•

With the command <LoadDoc> we load the XML file.
The parameter "FileName" contains the path and name of the file.
The parameter "NewDocRef" contains the name under which this document can be accessed
in the later commands ($inModel) in our script - it's like a variable.

♦

The command <For> performs a loop over certain elements and for each element found, the
(sub-) commands embraced by the <For> command are executed.
The parameter "NodeRef" contains the name of the reference over which we want to perform
the loop ($inModel - we just defined it before).
The Parameter XPath contains a XPath statement (XPath is a language to select elements out
of a XML structure - for more information see the w3c-spec or the w3schools.com tutorial) ,
we use it to select the wanted elements (in the example we are looking for all <bean>
elements.
The parameter "IteratorEleRef" contains the name under which the found element can be
accessed in the later commands ($bean), it's content changes with each iteration in the loop.

♦

The command <Set> sets the value of an element.
The parameter "Ref" contains the name of the reference to the element - if it does not
exist it will be created (in our example "$lbean.date" means the attribute "date" of the
<bean> element referenced by $lbean.
The parameter "Value" contains the value to be set. In our example it contains not a
string, but (the result of) a QiQu-Function; the function dateString('dd.MM.yy') will
return the current date in the given string format.

◊

The QiQu-Script - Performing The Transformation 12

http://www.w3.org/TR/xpath
http://www.w3schools.com/xpath/default.asp

The next <For> command, again, performs a loop over certain elements and for each element
found, the (sub-) commands embraced by the <For> command are executed.
The parameter "NodeRef" contains the name of the reference over which we want to perform
the loop (again we perform the loop over our $inModel).
The Parameter XPath contains the XPath statement, this time we are searching for all
<property> elements.
The parameter "IteratorEleRef" contains the name under which the found element can be
accessed in the later commands ($lprop), it's content changes with each iteration in the loop.

♦

The command <Set> sets the value of an element.
The parameter "Ref" contains the name of the reference to the element - if it does not
exist it will be created (in our example "$lprop.methName" means the attribute
"methName" of the <property> element referenced by $lprop.
The parameter "Value" contains the value to be set. In our example it contains not a
string, but (the result of) a QiQu-Function; the function
toFirstUpperCase($lprop.name) will return the value of the attribute "name" of the
<property> element referenced by $lprop - it's first letter will be set to upper case.

◊

The command <SaveDoc> will save a XML document to disc.
The parameter "FileName" contains the path and name of the file.
The parameter "DocRef" contains the name of the reference to the XML document we want
to save in the file - we will save the modified $inModel.
The parameter "Encoding" contains the XML encoding - this will be included in the header of
the XML file.

♦

Save your script.

To run the script, select Run as->QiQu script from the context-menu of the Navigation view or from the
context-menu of the QiQu Script editor itself.

Now have a look at the file " outputmodel01.xml" that was created in the folder " model/output".

Debugging the script

In order to debug your script, you have to do two things: activate breakpoints and start the script in debug
mode. A breakpoint can be activated either by selecting the "Toggle Breakpoint" entry in the context-menu of
the editor's marker bar (on the left side of the editor), by positio the insertion cursorinaline and then press
Ctrl+Shift+B or to double-click in the editor's marker bar on the line you want the breakpoint defined.

Debugging the script 13

In order to debug a script, you have to choose Debug as->QiQu Script from the context-menu of the
Navigation view or from the context-menu of the QiQu Script editor itself.

So, create a breakpoint on the first Set command (line 8), start the script in debug mode and switch to the
debug perspecitve. You should be seeing now something like this:

In the Variables view, you'll notice a couple of information. It is actually grouped in five parts. The first part
are the command parameters of the currently active command. In our case, this is the first Set command which
actually has 2 parameters. In the picture above, you can see that the Value parameter is selected. And as a
matter of fact, in the detail part of the variables few, you see, that the actual expression

Debugging the script 14

"dateString('dd.MM.yy')" is evaluated and displays the current date.
The second group displays the known properties. Since we don't have any defined in our script, this one is
empty.
The next group are the known xml-document references. '$inModel' was actually loaded by the LoadDoc
command. Go an select it in the variables view. You will see, that the detail part of the Variables view
displays now the complete xml-document. The second entry in there '$script2' is an internal reference which is
created by QiQu itself. It contains the script which is running. Select it, and you will see the script not only in
the editor, but also in the detail part of the Variables view.
Followed by the document references is the group with the element references. This contains only the $lbean
reference, which is the iterator reference of the enclosing For command. Again, if you select this entry, you
will see the complete element in the detail part of the Variables view.
The last group contains the known File references. Since we didn't define any, this one is empty.

You can step through the script by pressing F6 or run to the next breakpoint by F8. Alternatively, you can also
use the appropriate Toolbar buttons on the Debug view.

A Word About QiQu-Command Parameters

Maybe a bit early - but let's have a few words about the different types of parameters a QiQu-Command can
have.

You remember: A QiQu-Command is defined as XML-element and its parameters are defined as
XML-attributes. Therefore the correct Syntax for a QiQu-Command parameter is ParameterName="value".
The value and its format depends on the type of parameter...

There are basically 3 types of parameters:

Parameters Holding A Reference

References are like variables - they are placeholders for some value. There are two types of references:

References to XML documents, XML elements and attributes, files etc. (you could also say "a
structure") - use the prefix "$" to identify them.

•

Reference to properties - a property contains some plain text (i.e. to substitute a file-name) - use no
prefix to identify them

•

Samples:

reference used in
parameter meaning

PropertyX reference to a the property "PropertyX" - do not use the prefix "$" for
property-references!!

$Document reference to a XML document
$Element reference to an XML element
$Element.attr1 reference to an attribute (attr1) of an XML element
Parameters Holding A Valueexpression

A valueexpression returns plain text, defining a file-name, a value to be set into an attribute etc. To build the
valueexpression you can use text, properties QiQu-Functions or values of referenced elements.

Samples:

For these samples we assume that we have

A Word About QiQu-Command Parameters 15

a property named PropertyXY containing the text: "out there"•
an reference $Element to a xml element with the following structure:
<person name="Duck" firstName="Donald"/>

•

expression used in parameter returned (text-) value by the valueexpression

"'Hello '" "Hello " - all text in a valueexpression must be enclosed
by "'" (single-quotes)!!! (correct format: "'Hello '")

"PropertyXY" "out there"
"$Element.firstName" "Donald"
"'Hello ' + PropertyX" "Hello out there"
"Hello ' + toUpperCase($Element.firstName) " "Hello DONALD"
Parameters Holding A XPath Expression

A XPath expression is used to navigate in a XML-model (you can compare it with a SQL-statement for a
database). It is used to retrieve elements from a XML-model.

Inside the XPath expression you can also use QiQu references. QiQu references inside a XPath expression
must be enclosed by "#" and if its value shall be used as text it must be enclosed by "'" (single-quotes) as well.

Samples:

For these samples we assume that we have

a property named "PName" containing the text: "John"•
a property named "PElementName" containing the text: "Person"•
an reference $Element to a xml element with the following structure:
<person name="Duck" firstName="Donald"/>

•

XPath expression used in parameter resolved and executed XPath
expression

"//*[@name='#PName#']" //*[@name='John']
//Element[@attr1='#$Element.attr1#'] //Element[@attr1='Donald']
//#PElentName#[@name='#PName#'] //Person[@name='John']

The QiQu-Script - Creating The Output

Well, so far we only have created the new structure of the XML-file. So what we have to to is create the
output as described.

For the moment we are using only QiQu-Commands to produce the output - if you feel this is a bit clumsy:
An example using Velocity will follow...

We create a new QiQu-Script "script03.qiq":

<?xml version="1.0" encoding="ISO-8859-1"?>

 <QiQuScript>

 <LoadDoc FileName="'model/input/inputmodel01.xml'" NewDocRef="$inModel"/>

 <For NodeRef="$inModel" XPath="//bean" IteratorEleRef="$lbean">
 <Set Ref="$lbean.date" Value="dateString('dd.MM.yy')"/>
 <For NodeRef="$lbean" XPath="./propertylist/property" IteratorEleRef="$lprop">
 <Set Ref="$lprop.methName" Value="toFirstUpperCase($lprop.name)"/>
 </For>
 </For>

Parameters Holding A Valueexpression 16

 <For NodeRef="$inModel" XPath="//bean" IteratorEleRef="$lbean">
 <!-- creating the file -->
 <CreateFile NewFileRef="$lfile"/>

 <!-- creating the class header -->
 <PrintToFile FileRef="$lfile" Value="'/*'"/>
 <PrintToFile FileRef="$lfile" Value="'* Created by QiQu Bean Generator'"/>
 <PrintToFile FileRef="$lfile" Value="'* Date ' + $lbean.date"/>
 <PrintToFile FileRef="$lfile" Value="'*/'"/>
 <PrintToFile FileRef="$lfile" Value="'package ' + $lbean.package"/>
 <PrintToFile FileRef="$lfile" Value="''"/>
 <PrintToFile FileRef="$lfile" Value="'/**'"/>
 <PrintToFile FileRef="$lfile" Value="'* Bean Class ' + $lbean.name + '.'"/>
 <PrintToFile FileRef="$lfile" Value="'*/'"/>
 <PrintToFile FileRef="$lfile" Value="'public class ' + $lbean.name"/>
 <PrintToFile FileRef="$lfile" Value="'{'"/>

 <!-- creating the attributes -->
 <For NodeRef="$lbean" XPath="./propertylist/property" IteratorEleRef="$lprop">
 <PrintToFile FileRef="$lfile" Value="''"/>
 <PrintToFile FileRef="$lfile" Value="' /* m_' + $lprop.name + ' */'"/>
 <PrintToFile FileRef="$lfile" Value="' private ' + $lprop.type
 + ' m_' + $lprop.name + ' = null' + ';'"/>
 </For>

 <!-- creating the constructor -->
 <PrintToFile FileRef="$lfile" Value="''"/>
 <PrintToFile FileRef="$lfile" Value="' /**'"/>
 <PrintToFile FileRef="$lfile" Value="' * Default Constructor.'"/>
 <PrintToFile FileRef="$lfile" Value="' */'"/>
 <PrintToFile FileRef="$lfile" Value="' public ' + $lbean.name + '()'"/>
 <PrintToFile FileRef="$lfile" Value="' {'"/>
 <PrintToFile FileRef="$lfile" Value="' }'"/>

 <!-- creating the getters and setters -->
 <For NodeRef="$lbean" XPath="./propertylist/property" IteratorEleRef="$lprop">
 <!-- the getter method -->
 <PrintToFile FileRef="$lfile" Value="''"/>
 <PrintToFile FileRef="$lfile" Value="' /**'"/>
 <PrintToFile FileRef="$lfile" Value="' * @return m_' + $lprop.name"/>
 <PrintToFile FileRef="$lfile" Value="' */'"/>
 <PrintToFile FileRef="$lfile" Value="' public ' + $lprop.type
 + ' get' + $lprop.methName + '()'"/>
 <PrintToFile FileRef="$lfile" Value="' {'"/>
 <PrintToFile FileRef="$lfile" Value="' return m_' + $lprop.name + ';'"/>
 <PrintToFile FileRef="$lfile" Value="' }'"/>
 <PrintToFile FileRef="$lfile" Value="''"/>
 <!-- the setter method -->
 <PrintToFile FileRef="$lfile" Value="' /**'"/>
 <PrintToFile FileRef="$lfile" Value="' * @param ' + $lprop.name"/>

 <PrintToFile FileRef="$lfile" Value="' */'"/>
 <PrintToFile FileRef="$lfile" Value="' public void set' + $lprop.methName
 + '(' + $lprop.type + ' ' + $lprop.name + ')'"/>
 <PrintToFile FileRef="$lfile" Value="' {'"/>
 <PrintToFile FileRef="$lfile" Value="' m_' + $lprop.name
 + ' = ' + $lprop.name + ';'"/>
 <PrintToFile FileRef="$lfile" Value="' }'"/>
 </For>
 <!-- closing the class -->
 <PrintToFile FileRef="$lfile" Value="''"/>
 <PrintToFile FileRef="$lfile" Value="'}'"/>
 <PrintToFile FileRef="$lfile" Value="''"/>

 <!-- saving the .java file -->
 <SaveFile FileName="'model/output/' + $lbean.name + '.java'" FileRef="$lfile"/>
 </For>

The QiQu-Script - Creating The Output 17

 </QiQuScript>

Let's have a closer look at the first section:
(Why not using your debugger knowledge and see what happens when reading tho following explanations?)

<LoadDoc FileName="'model/input/inputmodel01.xml'" NewDocRef="$inModel"/>
 <For NodeRef="$inModel" XPath="//bean" IteratorEleRef="$lbean">
 <Set Ref="$lbean.date" Value="dateString('dd.MM.yy')"/>
 <For NodeRef="$lbean" XPath="./propertylist/property" IteratorEleRef="$lprop">
 <Set Ref="$lprop.methName" Value="toFirstUpperCase($lprop.name)"/>
 </For>
 </For>

As a matter of fact, we do exactly the same as in "script02.qiq" - just with a bit more "style".

We load the input - OK, that's nothing new...•

Now we do the whole transformation task in just one <For> loop, containing an inner <For> loop.
The outer <For> command is actually exactly the same as our first <For> loop in "script02.qiq"

•

The inner <For> loop is only executed for each found $lbean - it does the same as our second <For>
loop in "script02.qiq".
The only thing we have to do is to adapt the statement in the "XPath" parameter of the inner <For>
command. It's value is now "./propertylist/property" which means we search for all <property>
elements within the element <propertylist> of the actual $lbean (which is a <bean> element

•

Please note: The combination of QiQu-Command and XPath statements is very powerful. To get most out of
it, you should be more familiar with XPath, though.
For more information about XPath, see the w3c-spec or the w3schools.com tutorial .

We don't save the output-model to disk this time - it's not necessary.

So now let's have a look at the second part of our script:

<For NodeRef="$inModel" XPath="//bean" IteratorEleRef="$lbean">
 <!-- creating the file -->
 <CreateFile NewFileRef="$lfile"/>
 <!-- creating the class header -->
 <PrintToFile FileRef="$lfile" Value="'/*'"/>
 <PrintToFile FileRef="$lfile" Value="'* Created by QiQu Bean Generator'"/>
 <PrintToFile FileRef="$lfile" Value="'* Date ' + $lbean.date"/>
 <PrintToFile FileRef="$lfile" Value="'*/'"/>
 <PrintToFile FileRef="$lfile" Value="'package ' + $lbean.package"/>

We create the wanted output as described in chapter ?? directly from within our QiQu-Script, without using
any other tool - like a template engine.

With the <For> command, we perform a loop over all <bean> elements of our (modified) model.•

The QiQu-Script - Creating The Output 18

http://www.w3.org/TR/xpath
http://www.w3schools.com/xpath/default.asp

The <CreateFile> command creates a new File (or rather a StringBuffer to write on) - it is not
written to disk yet...
The parameter "NewFileRef" contains the name of the reference under which the new file
will be accessible ($lfile).

♦

The command <PrintToFile> is used to write information into this file.
The parameter "FileRef" contains the name of the reference to the file we want to write
($lfile).
The parameter "Value" contains the string we want to write. As you can see, we can use
references to the actual element to retrieve the respective information (i.e. $lbean.date,
$lbean.package)

♦

etc...♦

 <!-- saving the .java file -->
 <SaveFile FileName="'model/output/' + $lbean.name + '.java'"
 FileRef="$lfile"/>
</For>

With the <SaveFile> command, we finally save all in to a file to disk.
Since this is done <bean> by <bean>, we are creating separate file for each one of them.

•

Save your script, run it and have a look at the generated ".java" files located in the 'model/output' folder (make
sure refresh the contents shown in your workspace - select the project, open the context menu and click
"Refresh").

The QiQu-Script - Creating The Output 19

Using Velocity
Instead of writing the output directly from within a QiQu-Script - as we have in "script03.qiq", you can also
use Velocity. QiQu has a tight integration of Velocity and there is also an editor for Velocity templates
included in the QiQu-Plugin.

You should be aware, though, that using Velocity means that you also need a basic understanding of the
Velocity template-/macro language.

You find out more about Velocity on http://jakarta.apache.org/velocity.

You will find out that Velocity is very powerful. But be careful using all those features - we recommend not
to put a lot of logic into the Velocity templates; put the transformation logic in your QiQu-Scripts and use
Velocity as a pure template-engine. If you do so, as a nice side-effect, your Velocity templates will be simple,
so that they almost look like the output you want to generate.

Deciding for or against the use of Velocity is mainly a matter of "gusto" - you can do it either way (you could
also use some other template-engine and create a new QiQu-Command to run it).

XML structure convention

You have to follow one rule when creating your xml-documents. If you can have several childelements of the
same name, they must be grouped under one elementen with the same name and the ending "list" (written
with lower case letters).

For instance, let's assume, you have a document containing several class elements and every class element
itself can have several attribut entries. The correct way to structure your document would be:

 <classlist>
 <class name="class1">
 <attributlist>
 <attribut name="attr1ofClass1"/>
 <attribut name="attr2ofClass1"/>
 </attributlist>
 </class>
 <class name="class2">
 <attributlist>
 <attribut name="attr1ofClass2"/>
 <attribut name="attr2ofClass2"/>
 </attributlist>
 </class>
 <classlist>

Please note: if you do not follow this rule, the code assist and the preview of the QiQu Velocity-Editor won't
work. And hence, the generation at all will fail.

The QiQu Velocity-Editor

To support you writing Velocity templates, the QiQu Eclipse-Plugin contains a template editor.

The QiQu Velocity-Editor is an extension of "Veloedit" (http://veloedit.sourceforge.net/).

The most important extensions are:

Using Velocity 20

http://jakarta.apache.org/velocity
http://sourceforge.net/veloedit

Code-Completion based on a given model

You can identify the model which shall be used as input for the template. Based on this model, the QiQu
Velocity-Editor will provide code-completion assistance.

To provide the editor a input model perform the following steps:

Open a Velocity template file in the QiQu Velocity-Editor•
Select the XML file containing the correct structure you want to use for your template in the
Navigator, open the context menu and select "Velocity Editor" >> "Provide in Context".

•

In the dialog that opens, leave the field "ContextName" as it is (it should contain "model" which is the
default name we use with QiQu). In the field "XPath" enter a correct XPath statement to define which
part of the model shall be used - if the complete model is used, you can put a "*". Considering our
"beanlist" example, you could select the file "inputmodel01.xml" in the navigator or package explorer
view and choose the "Provide in Context" action. If you enter "//bean[1]" in the dialog, the first bean
entry will be used in order to provide code assist and as data for the preview.

•

If you need to provide just one entry to the velocity context, you can directly use the RunVelocity-command.
The XML-node that is provided in the parameter "NodeRef" will be available in the velocity template under
the name '$model'. However, if it should be necessary to add several xml-elements to the velocity context
simply use the VelocityContextPut command. The parameter "ContextName" defines the name under which
the entry will be available in the template.

Realtime Preview

If you have provided an input model, you can perform a realtime preview. And if we say realtime preview, we
mean it. As soon as you type, the preview will adapt automatically.

Any place in the editor-window open the context menu and select "Preview as Text". A new Text-Editor will
open containing the generated output.

Code-Completion based on a given model 21

If you select the entry "Preview type specific" the QiQu Velocity Editor will try to open a type specific editor.
The type is evaluated base on the file ending. The naming convention is as follows: "filename.[type].vm". For
example, "javaVelocityTemplate.java.vm". When creating a type specific preview, the QiQu Velocity Editor
transfers a text-stream to the editor, not a file. Unfortunately, some editors to need a file in order to work.

My First Velocity Template

For our first Velocity template we will use the wanted output we described before as a starting point.

Create a new file named template01.vm in the "/velocity/template" folder. Open it and copy the following
content in the file:

/*
 * Created by QiQu Bean Generator
 * Date 11.01.06
 */
package ch.aloba.qiqu.helloWorld.beans

/**
 * Bean Class ABean.
 */
public class ABean
{
 /* m_firstProperty */
 private java.lang.String m_firstProperty = null;

 /* m_secondProperty */
 private java.lang.String m_secondProperty = null;

 /**
 * Default Constructor.

Realtime Preview 22

 */
 public ABean()
 {
 }
 /**
 * @return m_firstProperty
 */
 public java.lang.String getFirstProperty()
 {
 return m_firstProperty;
 }

 /**
 * @param firstProperty
 */
 public void setFirstProperty(java.lang.String firstProperty)
 {
 m_firstProperty = firstProperty;
 }

 /**
 * @return m_secondProperty
 */
 public java.lang.String getSecondProperty()
 {
 return m_secondProperty;
 }

 /**
 * @param secondProperty
 */
 public void setSecondProperty(java.lang.String secondProperty)
 {
 m_secondProperty = secondProperty;
 }
}

Remember - all the parts in bold italic are those we need to be able to fill dynamically.

Leave the editor containing your "template01.vm" open.•

In the Navigator select the XML file we created earlier - "model/output/output1.xml". Open the
context popup and select "Velocity Editor" >> "Provide in Context".

•

In the dialog that opens, leave the field "ContextName" as it is (it should contain "model" which is the
default name we use with QiQu). In the field "XPath" enter the value "//bean[1]" - this means the first
<bean> element found in the XML model.

•

Please note: With the last steps you just told the Velocity editor which structure will be input for the template
- you don't really need to do this to be able to write Velocity templates and to run the from within a
QiQu-Script. The only reason to do this is to better profit of the functionalities provided by the QiQu
Velocity-Editor.

Go back to your "template01.vm" and complete its content as follows:

#set($bean=$model)
/*
 * Created by QiQu Bean Generator

My First Velocity Template 23

 * Date ${bean.date}
 */

package ${bean.package}
/**
 * Bean Class ${bean.name}.
 */
public class ${bean.name}
{
#foreach($property in ${bean.propertylist})
 /* m_${property.name} */
 private ${property.type} m_${property.name} = null;
#end

 /**
 * Default Constructor.
 */
 public ${bean.name}()
 {
 }
 #foreach($property in ${bean.propertylist})
 /**
 * @return m_${property.name}
 */
 public ${property.type} get${property.methName}()
 {
 return m_${property.name};
 }
 /**
 * @param ${property.name}
 */
 public void set${property.methName}(${property.type} ${property.name})
 {
 m_${property.name} = ${property.name};
 }
 #end
}

What have we done? All entries starting with "#" are Velocity commands. All entries starting with "$" are
references to the model (that's the model we just provided as context).

The #Set command sets a reference/variable for further use in the template - we are setting a reference
named $bean which contains our model (the model is represented by $model)

•

Then we can already start using content of our referenced model as we have done with ${bean.name}
or ${bean.package}

•

Further down in the file you se the first #foreach command. The #foreach command performs a loop
over the selected elements - here for each <property> element in the <propertylist> element of the
actual <bean> (referenced by $bean).
The #foreach command must end with an #end command - all between is executed/produced for each
found element.

•

Run Your Template From Within A QiQu-Script

Create a new QiQu-Script named "script04.qiq"

Run Your Template From Within A QiQu-Script 24

<?xml version="1.0" encoding="ISO-8859-1"?>
<QiQuScript>
 <LoadDoc FileName="'model/input/inputmodel01.xml'" NewDocRef="$inModel"/>
 <For NodeRef="$inModel" XPath="//bean" IteratorEleRef="$lbean">
 <Set Ref="$lbean.date" Value="dateString('dd.MM.yy')"/>
 <For NodeRef="$lbean" XPath="./propertylist/property" IteratorEleRef="$lprop">
 <Set Ref="$lprop.methName" Value="toFirstUpperCase($lprop.name)"/>
 </For>
</For>
<For NodeRef="$inModel" XPath="//bean" IteratorEleRef="$lbean">
 <RunVelocity NodeRef="$lbean" TemplateFileName="'velocity/template/template01.vm'"
 OutputFileName="'model/output/velocity/' + $lbean.name +'.java'"/>
</For>
</QiQuScript>

The first part is identical with the one in "script03.qiq" - we perform the model transformation.

The only things we need to do now:

We perform a loop over the modified model with the <For> command - each found <bean> element
will be hold in the reference $lbean defined in the parameter "IteratorEleRef".

•

For each <bean> element found we use the command♦

<RunVelocity> to merge its content with the Velocity template.
The parameter "NodeRef" contains the reference to the XML structure we are passing
to Velocity ($lbean).
The parameter "TemplateFileName" contains the path and name of the Velocity
template to use.
The parameter "OutputFileName" contains the path and name of each .java file to be
created

◊

Save your script, run it and watch the output generated into the folder "model/output/velocity".

If you compare the output created with "script03.qiq" and "script04.qiq" they should be identical.

Using Protected Sections

According to the defined overwrite mode in the RunVelocity command, protected sections will not be
overwritten. This is done the following way:

The command RunVelocity checks if there the file already exists.1.
If the file does exist and if the file is not write protected, then the defined overwrite rule will apply. If
the mode "overwrite" is defined, the existing file will be overwritten. If the mode "keep" was defined,
the existing file won't be touched. If the mode "keepPS" was defined, the command will read all
protected setions from the file.

2.

The file will be completely newly generated.3.
If protecte sections were read, the will now be inserted in the new file.4.

The start of a protected section is identified by the string "QiQuPS Start [name]" and the ending is defined by

Using Protected Sections 25

"QiQuPS End [name]". Every protected section in a file must have a unique name in the file. Protected
sections cannot be nested or crossed. Every protected section must be "closed" by an appropriate end tag. If
this rules are not followed, an exception will be thrown.

The following template shows how protected sections are defined:

#set($bean=$model)
/*
 * Created by QiQu Bean Generator
 * Date ${bean.date}
 */

package ${bean.package}
/**
 * Bean Class ${bean.name}.
 */
public class ${bean.name}
{
 /**
 * Default Constructor.
 */
 public ${bean.name}()
 {
 }

 #foreach($property in ${bean.propertylist})
 /**
 * @return m_${property.name}
 */
 public ${property.type} get${property.methName}()
 {
 $property.type retVal = null;
 // QiQuPS Start get${property.methName}
 // TODO: implement logic
 retVal = ...
 // QiQuPS End get${property.methName}
 return retVal;
 }

 /**
 * @param ${property.name}
 */
 public void set${property.methName}(${property.type} ${property.name})
 {
 // QiQuPS Start set${property.methName}
 // TODO: implement logic
 // QiQuPS End set${property.methName}
 }
 #end
}

Despite the fact that there is the possibility to define protected sections, we do not recommend to use it.
Generally, mixing generated and hand-written code is a bad idea. First, it often influence users in the way, that
they do not use the generator, because the don't have trust that their manual written code won't be touched.
Second, there are couple of issues to have such mixed files under source control.

Using Protected Sections 26

Reusing QiQu-Scripts / Chaining QiQu-Scripts
Lets have a look again at our "script03.qiq". Besides the fact that maybe the section creating our ".java" files
is less "wysiwyg" than the Velocity template we just created (we discussed this issue already) it has another
disadvantage:

The logic of transforming input-model to output-model and the formatting of the output (the ".java" files) is
done in one single script. This is not a good idea - separating these tasks into different scripts is more flexible
for the future.

With QiQu you have the possibility to reuse QiQu-Scripts and "chain them together".

Let's see how this is done.

We take our "script03.qiq" as a starting point. Create a new QiQu-Script "script05.qiq" and copy/paste the
first part from "script03.qiq":

<?xml version="1.0" encoding="ISO-8859-1"?>
<QiQuScript>

 <LoadDoc FileName="'model/input/inputmodel01.xml'" NewDocRef="$inModel"/>

 <For NodeRef="$inModel" XPath="//bean" IteratorEleRef="$lbean">
 <Set Ref="$lbean.date" Value="dateString('dd.MM.yy')"/>
 <For NodeRef="$lbean" XPath="./propertylist/property" IteratorEleRef="$lprop">
 <Set Ref="$lprop.methName" Value="toFirstUpperCase($lprop.name)"/>
 </For>
 </For>
</QiQuScript>

As you can see - it contains only the transformation task.

Now create another QiQu-Script "script06.qiq" and copy/paste the rest of "script03.qiq":

<?xml version="1.0" encoding="ISO-8859-1"?>

<QiQuScript>

 <For NodeRef="$inModel" XPath="//bean" IteratorEleRef="$lbean">
 <!-- creating the file -->
 <CreateFile NewFileRef="$lfile"/>
 <!-- creating the class header -->
 <PrintToFile FileRef="$lfile" Value="'/*'"/>
 <PrintToFile FileRef="$lfile" Value="'* Created by QiQu Bean Generator'"/>
 <PrintToFile FileRef="$lfile" Value="'* Date ' + $lbean.date"/>
 <PrintToFile FileRef="$lfile" Value="'*/'"/>
 <PrintToFile FileRef="$lfile" Value="'package ' + $lbean.package"/>
 <PrintToFile FileRef="$lfile" Value="''"/>
 <PrintToFile FileRef="$lfile" Value="'/**'"/>
 <PrintToFile FileRef="$lfile" Value="'* Bean Class ' + $lbean.name + '.'"/>
 <PrintToFile FileRef="$lfile" Value="'*/'"/>
 <PrintToFile FileRef="$lfile" Value="'public class ' + $lbean.name"/>
 <PrintToFile FileRef="$lfile" Value="'{'"/>
 <!-- creating the attributes -->
 <For NodeRef="$lbean" XPath="./propertylist/property" IteratorEleRef="$lprop">
 <PrintToFile FileRef="$lfile" Value="''"/>
 <PrintToFile FileRef="$lfile" Value="' /* m_' + $lprop.name + ' */'"/>

Reusing QiQu-Scripts / Chaining QiQu-Scripts 27

 <PrintToFile FileRef="$lfile" Value="' private ' + $lprop.type
 + ' m_' + $lprop.name + ' = null' + ';'"/>
 </For>

 <!-- creating the constructor -->
 <PrintToFile FileRef="$lfile" Value="''"/>
 <PrintToFile FileRef="$lfile" Value="' /**'"/>
 <PrintToFile FileRef="$lfile" Value="' * Default Constructor.'"/>
 <PrintToFile FileRef="$lfile" Value="' */'"/>
 <PrintToFile FileRef="$lfile" Value="' public ' + $lbean.name + '()'"/>
 <PrintToFile FileRef="$lfile" Value="' {'"/>
 <PrintToFile FileRef="$lfile" Value="' }'"/>
 <!-- creating the getters and setters -->
 <For NodeRef="$lbean" XPath="./propertylist/property" IteratorEleRef="$lprop">
 <!-- the getter method -->
 <PrintToFile FileRef="$lfile" Value="''"/>
 <PrintToFile FileRef="$lfile" Value="' /**'"/>
 <PrintToFile FileRef="$lfile" Value="' * @return m_' + $lprop.name"/>
 <PrintToFile FileRef="$lfile" Value="' */'"/>
 <PrintToFile FileRef="$lfile" Value="' public ' + $lprop.type
 + ' get' + $lprop.methName + '()'"/>
 <PrintToFile FileRef="$lfile" Value="' {'"/>
 <PrintToFile FileRef="$lfile" Value="' return m_' + $lprop.name + ';'"/>
 <PrintToFile FileRef="$lfile" Value="' }'"/>
 <PrintToFile FileRef="$lfile" Value="''"/>
 <!-- the setter method -->
 <PrintToFile FileRef="$lfile" Value="' /**'"/>
 <PrintToFile FileRef="$lfile" Value="' * @param ' + $lprop.name"/>
 <PrintToFile FileRef="$lfile" Value="' */'"/>
 <PrintToFile FileRef="$lfile" Value="' public void set' + $lprop.methName
 + '(' + $lprop.type + ' ' + $lprop.name + ')'"/>
 <PrintToFile FileRef="$lfile" Value="' {'"/>
 <PrintToFile FileRef="$lfile" Value="' m_' + $lprop.name
 + ' = ' + $lprop.name + ';'"/>
 <PrintToFile FileRef="$lfile" Value="' }'"/>
 </For>
 <!-- closing the class -->
 <PrintToFile FileRef="$lfile" Value="''"/>
 <PrintToFile FileRef="$lfile" Value="'}'"/>
 <PrintToFile FileRef="$lfile" Value="''"/>

 <!-- saving the .java file -->
 <SaveFile FileName="'model/output/' + $lbean.name + '.java'" FileRef="$lfile"/>
 </For>

 </QiQuScript>

This script contains only the formatting part.

Now we have to "chain" the two scripts together. Create a new QiQu-Script "script07.qiq" as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>

<QiQuScript>

 <LoadDoc FileName="'script/script05.qiq'" NewDocRef="$script1"/>

 <RunQiQuScript NodeRef="$script1"/>

 <LoadDoc FileName="'script/script06.qiq'" NewDocRef="$script2"/>

 <RunQiQuScript NodeRef="$script2"/>

</QiQuScript>

Reusing QiQu-Scripts / Chaining QiQu-Scripts 28

What are we doing here?

With the first <LoadDoc> we are loading our first QiQu-Script - yes, that's the same command as we
used for loading our model... it's all XML....
The parameter "FileName" contains the path and name of the file to load.
The parameter "NewDocRef" contains the name of the reference under which the script will be
accessible.

•

The command <RunQiQuScript> actually runs the script.
The parameter "NodeRef" contains the reference to the script we just loaded.

•

... and the same for the second script.•

Actually from QiQu version 1.0.0, there is no need to call LoadDoc in advance. Simply use RunQiQuSript
FileName="'...'" to get the same result.

Reuse Of References

If you have a closer look at the last scripts we just created, you might have noticed, that we never saved the
outputmodel anywhere. How is that possible? The reason the scripts work correctly is that references live for
the entire running-cycle of a script. If you are chaining scripts, the live-cycle of each of them starts when it is
executed with the command <RunQiQuScript> and it ends when all the scripts are finished.

In our example, the reference $inModel is defined in "script05.qiq" but is still available for "script06.qiq".

This feature is often useful, but can also cause you trouble. Remember that behind the reference is a - real -
XML-model, which can be quite big and consume a lot of memory.

If you are sure you do not need a reference anymore, it might be a good idea to remove it again. You can do
this by using the <ClearRef> command.

Reuse Of References 29

Make Your Scripts More Flexible / The Use Of
Properties
Even though we can reuse our scripts now, if we have a closer look at them - still we can not be fully satisfied.
The QiQu-Scripts as well as the Velocity template are still to static and not convenient for multiple/more
flexible use i.e:

The filenames of the input-model is hard-coded•

The prefix for the instance-variables of the Java classes in the Velocity template is hard-coded ("m_")•

Let's change that! The magic word is "properties"...

Create a new (ordinary) file in the folder "script" named "script08.properties":

#the name of the input file
Input=model/input/inputmodel01.xml

What did we do? We have defined a property named "Input" holding the name of the file containing the
input-model.

Now make a copy of "script05.qiq", name it "script08.qiq" and change it as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>
<QiQuScript>

 <LoadDoc FileName="Input" NewDocRef="$inModel"/>

 <For NodeRef="$inModel" XPath="//bean" IteratorEleRef="$lbean">
 <Set Ref="$lbean.date" Value="dateString('dd.MM.yy')"/>
 <For NodeRef="$lbean" XPath="./propertylist/property" IteratorEleRef="$lprop">
 <Set Ref="$lprop.methName" Value="toFirstUpperCase($lprop.name)"/>
 </For>
 </For>

 </QiQuScript>

The only thing we changed is the command <LoadDoc> - we changed the parameter "FileName" to just hold
the name/reference of the property ("Input") instead of the concrete filename.

Now make a copy of "script07.qiq", name it "script09.qiq" and change it as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>

<QiQuScript>

 <LoadPropFromFile FileName="'script/script08.properties'"/>
 <LoadDoc FileName="'script/script08.qiq'" NewDocRef="$script1"/>
 <RunQiQuScript NodeRef="$script1"/>
 <LoadDoc FileName="'script/script06.qiq'" NewDocRef="$script2"/>
 <RunQiQuScript NodeRef="$script2"/>
</QiQuScript>

What did we do?

Make Your Scripts More Flexible / The Use Of Properties 30

The command <LoadPropFromFile> loads properties we have defined in a file.
The parameter "FileName" contains the path and name of our properties file to load

•

The we have to call our modified "script08.qiq" (instead of "script05.qiq" as before).•

The rest of the script remains unchanged...

Save the file and run "script09.qiq".

Again - because the live-cycle of references can span multiple scripts, the property named "Input" (which is a
reference - see A Word About QiQu-Command Parameters) is still available in "script08.qiq"; and the
reference $inModel - defined in "script08.qiq" is still available for "script06.qiq"

Please note: it is a pure design question where to load the property-file. You can create one property-file for
all of the scripts or for each individually; you can load each property file within the script it belongs to or in
the "main" script... It's you who decides!

Please note: it is of course also possible to define properties with the help of QiQu-Commands. You could
create a QiQu-Script containing only the definitions of your properties. This is done with the
<Set>-Command (<Set Ref="Input" Value="'model/input/inputmodel01.xml'"/>). Instead of loading the
properties-file with the <LoadPropFromFile>-Command, you would load the script with the <LoadDoc>-
and run it with the <RunQiQuScript>-Command...

Of course we could add some more properties and also make the formatting script "script06.qiq" more flexible
- i.e. to be able to choose the prefix for the instance-variables of the Java classes... maybe you can try it
yourself...

Make Your Scripts More Flexible / The Use Of Properties 31

Adding More Flexibility Using Property-Dialogs
Maybe you still feel that our solution is not flexible enough - you do not want to change a property-file each
time before running your script.

Here is the solution: Use property-dialogs.

Create a new simple file in the "script" folder and name it "dialog01.xml":

<propertydialog title="Small Gui Example">
 <widgetlist name="scriptselection">
 <widget type="label"
 name="Select The Input Model"
 propertyname=""
 startvalue=""/>
 <widget type="file"
 name="Inputmodel:"
 propertyname="Input"
 startvalue=""
 helptext="Select file containing the input to be transformed">
 </widget>
 </widgetlist>
</propertydialog>

This XML file defines the content of a Dialog-Window - these are not QiQu-Commands - it's rather a
defnition for simple GUI in XML...

The root element must be <propertydialog>, the attribute "title" contains the title displayed in the
Dialog-Window.

•

A property-dialog contains a widgetlist.•

The widgetlist contains one or more <widget> elements.
The attribute "type" defines its type (i.e. label, file(-chooser) etc.).
The attribute "name" defines the name of the widget (for some widgets this is also the name
displayed.
The attribute "propertyname" defines the name of the property under which the widget will be
accessible.
The attribute "startvalue" defines a (possible) initial value for the widget.
The attribute "helptext" defines a (possible) tool-tip helptext.

•

To use this dialog we will have to modify our script. Make a copy of "script09.qiq", name it "script10.qiq" and
change it as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>

<QiQuScript>

 <LoadDoc FileName="'script/dialog01.xml'" NewDocRef="$ldialog"/>

 <ShowPropertyDialog GuiNodeRef="$ldialog"
 PropFileName="'script/lastSavedValuesDialog01.xml'"/>
 <If Condition="cancelbutton">
 <Exit/>

Adding More Flexibility Using Property-Dialogs 32

 </If>

 <LoadDoc FileName="'script/script09.qiq'" NewDocRef="$script1"/>
 <RunQiQuScript NodeRef="$script1"/>
 <LoadDoc FileName="'script/script06.qiq'" NewDocRef="$script2"/>
 <RunQiQuScript NodeRef="$script2"/>

</QiQuScript>

What did we do?

We deleted the <LoadPropFromFile> command - we don't need it anymore.•

Instead we load our dialog-definition file with the command <LoadDoc> - yes, again - it's just XML...•

The <ShowPopertyDialog> will open the dialog we just defined.
The parameter "GuiNodeRef" contains the name of the reference under which our dialog will be
accessible.
The parameter "PropFileName" contains the name of the file in which user entries will be saved for
further use; that means if you start the dialog a next time it will read out the content of the file you
defined here and fill the dialog accordingly (as proposal).

•

The <IF> command tests if the value of the property "cancelbutton" - defined in the parameter
"Condition" evaluates to "true", which means the cancel-button was pressed. The property
"cancelbutton" is automatically provided by the property-dialog.

•

If the cancel-button was pressed, we end our script with the <Exit> command.•

Save the script and run it - the following dialog should be displayed:

Adding More Flexibility Using Property-Dialogs 33

Managing your Properties / Using the Script
Properties Dialog
There is still an other possibility to manage the configuration of your QiQu script. The QiQu properties dialog
allows you to manage your properties files, log level and many more. This makes it a lot easier to manage
your various configrations. Let's have a closer look at it, shall we?

To access the dialog, simply select the script file in the Navigator, open the context-menu (2nd mouse-button)
and select Properties. As you can see below, you can also open the dialog with the hot key combination
Alt+Enter.

After selecting Properties from the context-menu, a dialog will open that shows your various configration
options for your QiQu script. Along with additional information of the file (item Info in the tree) and other
properties, you will find an item QiQu. Select it and the QiQu properties associated with this *.qiq file will be
presented to you.
As you can see below you can easily manage your settings for the selected script.

Managing your Properties / Using the Script Properties Dialog 34

So what exactly can you define and specify in this dialog? Let's have a look at the different sections.

Launch Config Name

Here you can specify a launch configuration name. This name will be displayed if you open the eclipse "Run"
shortcut. Of course you have to run your script at least once before you can use the shortcut. Having done that,
you will find your launch configuration name along with a QiQu logo so you can easily identify your
scripts. If you don't specify any launch configuration name, a name will be created of the following pattern:

QiQu Project name script_script name

For example for our script file script.qiq, that belongs to the project TheQiQuTutorial the generated launch
configuration name would be:

QiQu TheQiQuTutorial script_script.qiq

Please note: You will overwrite your launch configuration if you change some of your settings, but you don't
change the launch configuration name. Your newly defined settings will be stored in your "old" launch
configuration and your "old" settings are lost, i.e. overwritten. It is up to you to decide if it's useful to change
the name of your launch configuration or not. To make sure you can use your current launch configuration
later again it would be wise to assign a launch configuration name to it that differs from the last launch
configuration name.

Path

This section shows the path of your script file, starting from the directory where your project is located in.

Properties File

You can specify your properties file in this section (see also The Use Of Properties). Instead of referencing
your properties file in a hard-coded manner, you can select your desired properties file in through dialog. This
allows you to add an additional degree of flexibility to your scripts because you can easily change your
properties file, or you can switch between two different properties files just by selecting the desired file in this
dialog. The path of this file will be presented in a relative form starting at the project base directory.

Launch Config Name 35

Please note: In order for a file to qualify as a property file, it must have the extension *.properties.

Properties

Instead of defining an entire properties file, you can also simply specify one or more properties. Or you can do
this to create some additional properties even if you already have defined a properties file. So how do you add
these properties? This is made in the same way as you would do it in a properties file. Associate a value to a
property and that's it. Easy, don't you think? As mentioned above, you can define multiple properties, all you
have to do is seperate them by a semicolon.

Example:
Input=model/input/inputmodel01.xml;Output=model/output/outputfile.xml

Now we have specified two properties, input and output which are holding the values
model/input/inputmodel01.xml and model/output/outputfile.xml respectively.

BaseDir

You can define a new BaseDir. All your relative paths in your scripts will take this specified directory as their
starting point.

Please note: The specified base directory will be an absolut path, not a relative path based from your script
file.

LogLevel

In this section of the dialog you can select one of the given log level. The provided options are all,
trace, debug, info, warn and error. The default setting is info.

Add External JARs

Here you can specify additional libraries that will be used when you run the script. Similar to the definition of
a properties file this feature allows you to add a bit more flexibility to your script because you don't have to
reference your external jars in a hard coded way. The number of libraries is not limited.

Please note: It's possible that a user by accident includes a library more than once (which can happen if you
add the same library in the preferences AND in the properties). But in that case the double referrenced
library will only be included once.

Below you can see an example of a properties dialog where all the properties have been set.

Properties File 36

So what have we done here? We specified a name MyScriptPropertiesConfiguration for our
launch configuration for the file /TheQiQuTutorial/script/script.qiq. Then we added a
properties file tutorial.properties for this script that lies in the base directory of our project. Because
we wanted to use additional properties that are not defined in our properties file, we added the properties
Name and Firstname with their values Donald and Duck respectively.
So far so good. Then we specified a BaseDir, in this particular case the base directory of our project. We also
set the log level to debug and added an additional library that shall be included when running this script.

Please note: All your settings will take effect the first time you run your script, not before... Don't try to run
your current configuration by the Eclipse Run shortcut. Read the next chapter to find out why.

The Eclipse Run dialog and the QiQu Script type

Eclipse provides an easy way to manage your various launch configurations, the Eclipse Run Dialog. This
dialog is accessible in multiple ways. One possibility is shown here:

When the eclipse run dialog is open, you will see the different configuration types, like Java Applet or
JUnit. You will also notice, that QiQu offers it's own configuration type QiQu Script.
This type now contains all your launch configurations that you've launched until now. If you open the
configurations tree you can see your launch configurations of your scripts.

Add External JARs 37

All your properties settings from the properties dialog (and from your QiQu Preferences as well; see
Editor-Settings) are passed as arguments to the QiQuScriptRun class. After running your script you can check
your arguments (and add additional arguments as well) in the Eclipse Run dialog in the tab (x) =
Arguments as shown in the picture below.

Please note: In order to keep this argument list as short as possible double occurrences of the same libraries
will be deleted.

Along with the standard Java Application Tabs like Main, JRE, Classpath, Source,
Environment and Common, you will find an additional Refresh tab in this dialog. Therein you can
specify whether or not your workspace will refresh after running your QiQu script. Also, you can define if
only some certain directories should be refreshed after running the script. This is useful to show your created
output in the navigator. If you abandon this refreshing option, you'll risk to have an obsolete mapping of your
resources in the navigator tree.

This refresh option makes sense for instance if you'd like to have your Output directory refreshed. This
could be a directory where your files are generated in. So after running your script you want to have this
folder refreshed, but you don't want to have the entire project or workspace refreshed (which potentially could
take a while, especially if you automatically build your workspace after a refresh).

The Eclipse Run dialog and the QiQu Script type 38

The Eclipse Run dialog and the QiQu Script type 39

Putting the Generator into a single jar
Ok, we wrote the scripts, we created the templates and now we have a bunch of files lying in some directories
inside our QiQu-project. However, the users of our generator don't want to receive a bunch of files, in order to
be able to use the generator. The just like to have one single file. So what do we do?

The answer is quite simple. Creating an ant script which puts everything into a single jar. The following ant
script can be used in order to do this.

<project name="Build Generator Jar" default="default" basedir=".">

 <property environment="env"/>
 <property name="tempdir" location="${basedir}/temp"/>

 <target name="default" depends="createOutputDir,jarOutput">
 </target>

 <target name="createOutputDir">
 <delete dir="${tempdir}"/>

 <unjar dest="${tempdir}">
 <fileset dir="${qiqu.dir.lib.plugin}">
 <include name="*.jar"/>
 </fileset>
 </unjar>

 <copy todir="${tempdir}/velocity/template">
 <fileset dir="${basedir}/velocity/template"/>
 </copy>

 <copy todir="${tempdir}/script">
 <fileset dir="${basedir}/script/">
 <!-- copy the scripts -->
 <include name="**/*.qiq"/>
 <!-- copy property dialog definition files -->
 <include name="**/gui/*.xml"/>
 </fileset>
 </copy>
 <delete dir="${tempdir}/META-INF"/>
 </target>

 <target name="jarOutput" >
 <jar basedir="${tempdir}" destfile="runtime/bomgenerator.jar" manifest="manifest.txt"/>
 </target>
</project>

The target "createOutputDir" copies all files to a temporary directory. It unjars also all needed jars from the
QiQu-lib plugin. The appropriate ant property "qiqu.dir.lib.plugin" is automatically created when installing
QiQu in eclipse (check the ant runtime preferences of eclipse). The second target "jarOutput" simply puts the
temporary directory into a single jar.

Keep the following rules in mind:

Put the ant script in the home directory of your project.•
Inside your scripts, reference other scripts and velocity templates only relatively from the project
home directory.

•

Putting the Generator into a single jar 40

	Table of Contents
	Installing The QiQu-Plugin For Eclipse
	Preconditions
	Installing The QiQu-Plugin For Eclipse Using The Zip-File
	Installing The QiQu-Plugin For Eclipse Using The Update-Site

	Create A New QiQu-Project
	Create A New QiQu-Script
	The QiQu Script-Editor
	Code-Completion and Help
	Editor-Settings
	Debugger Integration

	My First QiQu-Script
	My First Transformation With QiQu
	The Input
	The Wanted Output
	The QiQu-Script - Performing The Transformation
	Debugging the script
	A Word About QiQu-Command Parameters
	Parameters Holding A Reference
	Parameters Holding A Valueexpression
	Parameters Holding A XPath Expression

	The QiQu-Script - Creating The Output

	Using Velocity
	XML structure convention
	The QiQu Velocity-Editor
	Code-Completion based on a given model
	Realtime Preview

	My First Velocity Template
	Run Your Template From Within A QiQu-Script
	Using Protected Sections

	Reusing QiQu-Scripts / Chaining QiQu-Scripts
	Reuse Of References

	Make Your Scripts More Flexible / The Use Of Properties
	Adding More Flexibility Using Property-Dialogs
	Managing your Properties / Using the Script Properties Dialog
	Launch Config Name
	Path
	Properties File
	Properties
	BaseDir
	LogLevel
	Add External JARs

	The Eclipse Run dialog and the QiQu Script type

	Putting the Generator into a single jar

