
Improving performance

http://www.qiqu.org
http://www.aloba.ch
http://sourceforge.net/projects/qiqu

Table of Contents
The problem with performance...1

Creating the testdata and the testscript..2
The commands Profile and ProfileReport..3

Improving the performance...4
Using relativ xpath expressions...4
Splitting a large document...4
Combining using a relativ expression and splitting of documents..4
Using the qiqu index commands..5

Measurement results...6

Conclusion...7

i

The problem with performance
Having a well performing generator is critical when following an MDSD or MDA driven approach despite the
fact that a lot of people don't agree with that. Their argument is that a generator will be running in a build
process. However, the opposite is the true. A developer, who changes a model wants to be able to check this
change immediately. He doesn't want to wait until the next day, when a new daily build is available.
Therefore, the generator will be running inside his development environment.

QiQu is based on XML transformation. Therefore, QiQu scripts will contain a lot of code, where an
XML-element in an XML-document is selected by its attribute values. For instance, in XMI documents, all
different elements are linked together over ids. Every element in the XMI document has an unique attribute
"xmi.id". If an element needs to reference another one, it has an appropriate "xmi.idref" attribute. That's the
reason you will often need to write xpath expressions in "For" and "SelectFirst" commands that look
somekind like this
//Class[@xmi.id=#$stereotype.owner.xmi.idref#].

In QiQu, we are using Dom4J together with jaxen. Unfortunately, an xpath expression like mentioned before
does not perform well for large xml documents. As a matter of fact, if the size of a document doubles, the
needed time to execute the same xpath is likely to be four times bigger than before.

So, let me show you, how you can measure and improve the execution time.

The problem with performance 1

Creating the testdata and the testscript
In order to demonstrate how the performance can be influenced, we need some data to test the performance.
This is done with the script "createtestdata.qiq" that is contained in the tutorial project.

<QiQuScript>

 <CreateDoc NewDocRef="$testdataDoc"/>
 <CreateEle NodeRef="$testdataDoc" EleName="'Testdata'" NewEleRef="$testdata"/>
 <CreateEle NodeRef="$testdata" EleName="'TypeAList'" NewEleRef="$typealist"/>
 <CreateEle NodeRef="$testdata" EleName="'TypeBList'" NewEleRef="$typeblist"/>
 <CreateEle NodeRef="$testdata" EleName="'TypeCList'" NewEleRef="$typeclist"/>

 <Set Ref="counter" Value="'0'"/>

 <While Condition="isSmallerThan(counter , NumberOfElements)">
 <CreateEle NodeRef="$typealist" EleName="'TypeA'" NewEleRef="$newTypeA"/>

 <Set Ref="$newTypeA.id" Value="'A' + counter"/>
 <Set Ref="$newTypeA.counter" Value="counter"/>
 <Set Ref="$newTypeA.text" Value="'A text ' + counter"/>

 <CreateEle NodeRef="$typeblist" EleName="'TypeB'" NewEleRef="$newTypeB"/>

 <Set Ref="$newTypeB.id" Value="'B' + counter"/>
 <Set Ref="$newTypeB.counter" Value="counter"/>
 <Set Ref="$newTypeB.text" Value="'B text ' + counter"/>

 <CreateEle NodeRef="$typeclist" EleName="'TypeC'" NewEleRef="$newTypeC"/>

 <Set Ref="$newTypeC.id" Value="'C' + counter"/>
 <Set Ref="$newTypeC.counter" Value="counter"/>
 <Set Ref="$newTypeC.text" Value="'C text ' + counter"/>

 <Set Ref="counter" Value="addition(counter , '1')"/>
 </While>

 <SaveDoc FileName="'data/testdata.xml'" DocRef="$testdataDoc"/>
</QiQuScript>

The script creates a document with the structure

 <Testdata>
 <TypeAList>
 <TypeA id="A1" counter="1" text=".."/>
 <TypeA id="A2" counter="2" text=".."/>
 ...
 </TypeAList>
 <TypeBList>
 <TypeB id="B1" counter="1" text=".."/>
 <TypeB id="B2" counter="2" text=".."/>
 ...
 </TypeBList>
 <TypeCList>
 <TypeC id="C1" counter="1" text=".."/>
 <TypeC id="C2" counter="2" text=".."/>
 ...
 </TypeCList>
 </Testdata>

Creating the testdata and the testscript 2

The number of created elements under each list is defined by the property "NumberOfElements". Next, we
need a test algorithm. The following one will do:

 <LoadDoc FileName="'data/testdata.xml'" NewDocRef="$testdata"/>
 <For NodeRef="$testdata" XPath="//TypeA" IteratorEleRef="$typea">
 <SelectFirst NodeRef="$testdata" XPath="//TypeB[@counter=#$typea.counter#]" SelectedEleRef="$selectedB"/>
 <SelectFirst NodeRef="$testdata" XPath="//TypeC[@counter=#$typea.counter#]" SelectedEleRef="$selectedC"/>
 </For>

The alogrithm iterates over all TypA elements and selectes the element with the same content in the attribute
"counter" in the lists B and C. With the qiqu commands "Profile" and "ProfileReport" we can measure the
time that is needed to execute the algorithm. So let's surround our test algorithm with the apropriate code:

 <QiQuScript>
 <!-- create the testdata by calling createtestdata.qiq script -->
 <Set Ref="NumberOfElements" Value="'1000'"/>
 <LoadDoc FileName="'script/createtestdata.qiq'" NewDocRef="$createDataScript"/>
 <RunQiQuScript NodeRef="$createDataScript"/>

 <LoadDoc FileName="'data/testdata.xml'" NewDocRef="$testdata"/>

 <!-- ************************** No Optimizations ******************************* -->
 <Profile Name="'5 NoOptimizations'"/>
 <EchoText InfoText="'No Optimizations'"/>
 <For NodeRef="$testdata" XPath="//TypeA" IteratorEleRef="$typea">
 <SelectFirst NodeRef="$testdata" XPath="//TypeB[@counter=#$typea.counter#]" SelectedEleRef="$selectedB"/>
 <SelectFirst NodeRef="$testdata" XPath="//TypeC[@counter=#$typea.counter#]" SelectedEleRef="$selectedC"/>
 </For>
 <ProfileReport FileName="'profileReport'"/>
 </QiQuScript>

The commands Profile and ProfileReport

As mentioned, by using the commands "Profile" and "ProfileReport" it is possible to measure the execution
time of single parts in a qiqu script. As soon as the QiQu engine finds a "Profile" command, it starts a timer
that is stopped as soon as another "Profile" command or the "ProfileOutput" command is executed. The results
are written in a semicolon separeted file, which can be defined in the "ProfileOutput" command. The file
contains a line for every defined measure point (defined by the command "Profile"). The first column is the
name of the measure point, the second is the number of times this point was hit. The third column shows the
average time per run and the last column shows the total time that was accounted to this measure point.

The commands Profile and ProfileReport 3

Improving the performance
There are a couple of ways to improve the perfomance. So let's examine those. I will show an appropriate
implementation and I will also give you some hints in which situation they can be used.

Using relativ xpath expressions

The xpath expression performs better the more precisly we are able to define the xpath. Improving our
example algorithm with this strategy, we do not use the general xpath expression like '//TypeA', instead we
will use write an expression like './TypeAList/TypeA'. However, this approach is not always possible. If we
consider, for instance, an XMI-document that has with a nested package structure, we do not know the path to
the Class-Element. In those cases it is necessary to use '//Class[@xmi.id=value].

 <!-- ************************** Relativ ******************************* -->
 <Profile Name="'4 Relativ selected'"/>
 <EchoText InfoText="'relativ selected'"/>

 <For NodeRef="$testdata" XPath="./Testdata/TypeAList/TypeA" IteratorEleRef="$typea">
 <SelectFirst NodeRef="$testdata" XPath="./Testdata/TypeBList/TypeB[@counter=#$typea.counter#]" SelectedEleRef="$selectedB"/>
 <SelectFirst NodeRef="$testdata" XPath="./Testdata/TypeCList/TypeC[@counter=#$typea.counter#]" SelectedEleRef="$selectedC"/>
 </For>

Note: since '$testdata' is a document and not the root node of the document, the root node has be containend in
the xpath-expression: './Testdata/.....'.

Splitting a large document

Sometimes it is possible to split a large document into separate documents. Following this approach, we can
split our testdata document into 3 independent documents.

 <!-- ************************** Split ******************************* -->
 <Profile Name="'3 Splitted input'"/>
 <EchoText InfoText="'Splitted input'"/>
 <SelectFirst NodeRef="$testdata" XPath="//TypeAList" SelectedEleRef="$typealist"/>
 <SelectFirst NodeRef="$testdata" XPath="//TypeBList" SelectedEleRef="$typeblist"/>
 <SelectFirst NodeRef="$testdata" XPath="//TypeCList" SelectedEleRef="$typeclist"/>

 <CreateDoc EleRef="$typealist" NewDocRef="$typeadoc"/>
 <CreateDoc EleRef="$typeblist" NewDocRef="$typebdoc"/>
 <CreateDoc EleRef="$typeclist" NewDocRef="$typecdoc"/>

 <For NodeRef="$typeadoc" XPath="//TypeA" IteratorEleRef="$typea">
 <SelectFirst NodeRef="$typebdoc" XPath="//TypeB[@counter=#$typea.counter#]" SelectedEleRef="$selectedB"/>
 <SelectFirst NodeRef="$typecdoc" XPath="//TypeC[@counter=#$typea.counter#]" SelectedEleRef="$selectedC"/>
 </For>

Combining using a relativ expression and splitting of
documents

I included the this algorithm in the tutorial project as well. However, the performance ist pretty much the same
as if just a relativ xpath expression is used. Hence there is no appropriate situation, when this approach should
be used.

 <!-- ************************** Split and relativ ******************************* -->

Improving the performance 4

 <Profile Name="'2 Split and relativ'"/>
 <EchoText InfoText="'Split and relativ'"/>
 <SelectFirst NodeRef="$testdata" XPath="//TypeAList" SelectedEleRef="$typealist"/>
 <SelectFirst NodeRef="$testdata" XPath="//TypeBList" SelectedEleRef="$typeblist"/>
 <SelectFirst NodeRef="$testdata" XPath="//TypeCList" SelectedEleRef="$typeclist"/>

 <CreateDoc EleRef="$typealist" NewDocRef="$typeadoc"/>
 <CreateDoc EleRef="$typeblist" NewDocRef="$typebdoc"/>
 <CreateDoc EleRef="$typeclist" NewDocRef="$typecdoc"/>

 <For NodeRef="$typeadoc" XPath="./TypeAList/TypeA" IteratorEleRef="$typea">
 <SelectFirst NodeRef="$typebdoc" XPath="./TypeBList/TypeB[@counter=#$typea.counter#]" SelectedEleRef="$selectedB"/>
 <SelectFirst NodeRef="$typecdoc" XPath="./TypeCList/TypeC[@counter=#$typea.counter#]" SelectedEleRef="$selectedC"/>
 </For>

Using the qiqu index commands

As I wrote my first generator with QiQu, performance issues where raised shortly after I distributed my
generator to developers. They had a model with probably 300 classes and the execution time was over 20
minutes. To make things worse, the model didn't include half of the classes that would be needed in the
model. By splitting the documents into parts, I was able to decrease the execution time under 10 minutes.
However, by knowing that the model size would still increase significantly, I had to find another solution.

As I wrote in the introduction to this tutorial, the performance bottlnecks were caused by xpath expressions
based on an attribute value. Simply selecting all XML-elements with a specific attribute does perform very
well. However, as soon as a check for a specific attribute value was added ...

The solution was to write a specific "Index" command, which indexed all XML-elements of an
XML-document based on the value of a specific attribute. So, if there is an xpath expression in the form
//xxx[@name=''] (xxx can also be a *), the results are read from the index, instead of really executing the
xpath.

The "Index"-command has a parameter "AttrNames", which defines comma separated list of attributes. The
"Index"-command will create an index for every attribute in this list.

If a document or a node is indexed, and a new element is added, the new element will not be included in the
index. Therefore, if a new element was added, it is necessary to clear the existing index on the node and to call
the "Index"-command again.

Using relativ xpaths on an indexed document takes a lot longer, since the index is only used for xpaths in the
form of //xxx[@name='']. For all other kind of xpath expressions, the xpath is actually executed.

 <!-- ************************** Index ******************************* -->
 <Profile Name="'1 Index'"/>
 <EchoText InfoText="'Index'"/>

 <Index NodeRef="$testdata" AttrNames="'counter'"/>
 <For NodeRef="$testdata" XPath="//TypeA" IteratorEleRef="$typea">
 <SelectFirst NodeRef="$testdata" XPath="//TypeB[@counter=#$typea.counter#]" SelectedEleRef="$selectedB"/>
 <SelectFirst NodeRef="$testdata" XPath="//TypeC[@counter=#$typea.counter#]" SelectedEleRef="$selectedC"/>
 </For>
 <ClearIndex NodeRef="$testdata"/>

Combining using a relativ expression and splitting ofdocuments 5

Measurement results
The following table and diagram contain the measurement results.

100 200 300 500 700 1000 1500 2000 5000 10000
Index 40 60 90 190 240 251 381 571 1172 2173

split and relativ 130 491 932 2634 5518 10885 25216
relativ 130 440 971 2583 5307 10415 25737
split 180 691 1522 4036 8803 18246

no opt 361 1252 3015 8923 19949

Measurement results 6

Conclusion
The only approach that scales, is using indexes. All others will explode with a raising number of elements.
Therefore, in order to improve the performance, consider the following hints:

Reduce the need for xpath-expressions in which you test for an attribute value. You can do this by
restructuring your document. An example for XMI: create a new document out of the XMI document,
where you put all stereotypes information directly under a Class element, instead of referencing them
by an identifier. Calculate the package once and put it as an attribute in the Class element.

•

If you need to select elements by attribute values, make sure, you can use indexes. For example, if
you need to select an element because of several attributes (//Element[@attr1="x" and
attr2="y") it's probably better to split the request. Create an index for the attribute that narrows the
the number of result the most. Iterate over the results and test with if statements for the second
attribute, or put the results of the first request in a new document, and create an index for the second
attribut on that document.

•

If everything else fails, you still can write your own optimised commands.•

Conclusion 7

	Table of Contents
	The problem with performance
	Creating the testdata and the testscript
	The commands Profile and ProfileReport

	Improving the performance
	Using relativ xpath expressions
	Splitting a large document
	Combining using a relativ expression and splitting of documents
	Using the qiqu index commands

	Measurement results
	Conclusion

